
asynDriver

Table of Contents
asynDriver: Asynchronous Driver Support..1

License Agreement..1
Contents...1
Purpose...1
Status..2
Acknowledgments..2
Overview of asynDriver...3

Standard Asynchronous Driver Interfaces...4
Overview...5
Comments:...5

asynDriver Structures and Interfaces...6
asynStatus..6
asynException..6
asynQueuePriority...7
asynUser..7
asynInterface..8
asynManager..8
asynCommon...11
asynOctet...11
Trace Interface...12
asynTrace...13

Synchronous Interface to asynDriver...14
Theory of Operation...15

Multiple Device vs Single Device port drivers...15
Connection Management...15
Flow of Control...16
portThread...16

asynRecord: Generic EPICS Record Support..17
Example...18
Test Example..20
asynGpib..21

asynGpibDriver.h..21
asynGpib..22
asynGpibPort...23

Port Drivers..23
Local Serial Port..23
TCP/IP or UDP/IP Port...24
vxi11..25
Green Springs IP488..26
National Instruments GPIB−1014D..26

Diagnostic Aids..27
iocsh commands..27

Install and Build...28
Install and build asynDriver..28
Using asynDriver components with an EPICS iocCore application...29

License Agreement..29

asynDriver

i

asynDriver

ii

asynDriver: Asynchronous Driver Support
Release 3.2

Marty Kraimer, Eric Norum and Mark Rivers

June 22, 2004

License Agreement

This product is available via the open source license described at the end of this document.

Contents

Purpose
Status
Acknowledgments
Overview of asynDriver
asynDriver Structures and Interfaces
Synchronous Interface to asynDriver
Theory of Operation
asynRecord: Generic Record Support
Example
Test Example
asynGpib
Port Drivers

Local Serial Port•
TCP/IP or UDP/IP Port•
vxi11•
Green Springs IP488•
National Instruments GPIB−1014D•

Diagnostic Aids
Install and Build

Purpose

asynDriver is a general purpose facility for interfacing device specific code to low level communication drivers.

A primary target for asynDriver is EPICS IOC device support but, other than using libCom, it is independent of
EPICS.

The following are some of the existing EPICS general purpose device support systems that have been converted
to use asynDriver.

gpibCore is the operating−system−independent version of the Winans/Franksen GPIB support.•
mpfSerial is the serial support provided with MPFOSI (Message Passing Facility)•

asynDriver: Asynchronous Driver Support 1

The following are some of the existing EPICS general purpose device support systems that could be converted to
use asynDriver.

streams is the protocol file based support for serial/GPIB/CAN from Dirk Zimoch.•
devAscii/drvAscii is serial support from KECK Observatory.•

Each of these systems is used at EPICS facilities for accessing GPIB and/or serial devices. Because device
support has been written for many instruments and thousands of database records use the device support, users
will not be easily persuaded to switch from their existing solution. Thus asynDriver implements a framework
below device support that can be used by all of the above systems so that all can share the same drivers.

Each system needs to be modified so that the device support component is compatible with existing use but
replace the driver part with asynDriver. The benefit is that all could share the same set of low level drivers.

gpibCore and mpfSerial have already been converted and is included with asynDriver.

Hopefully Dirk Zimoch will get time soon to convert streams and Allen Honey time to convert devAscii.

In the future other protocols will be supported especially for Ethernet based devices.

Status

This version provides

asynManager, i.e. the software layer between device support and drivers.•
asynRecord: EPICS record support that provides a generic interface to asynManager, asynCommon,
asynOctet, and asynGpib.

•

devGpib: EPICS device support that replaces the device support layer of the Winans/Franksen gpibCore
support.

•

asynGpib: a replacement for the drvGpibCommon layer of the Franksen gpibCore support.•
drvAsynSerialPort: Support for devices connected to serial ports.•
drvAsynIPPort: Support for devices connected to devices connected through Ethernet/Serial converter
boxes, TCP/IP sockets or UDP/IP sockets.

•

vxi11: A replacement for the vxi11 support of the Franksen gpibCore support.•
gsIP488: A low level driver for the Greensprings IP488 Industry Pack module. This support is only
implemented for vxWorks.

•

Acknowledgments

The idea of creating asynDriver resulted from many years of experience with writing device support for serial and
GPIB devices. The following individuals have been most influential.

John Winans
John provided the original EPICS GPIB support. Databases using John's support can be used without
modification with devGpib. With small modifications, device support modules written for John's support
can be used.

Benjamin Franksen
John's support only worked on vxWorks. In addition the driver support was implement as a single source
file. Benjamin defined an interface between drvCommon and low level controllers and split the code into

asynDriver

2 Status

drvGpib and the low level drivers. He also created the support for drvVxi11.
Eric Norum

Eric started with Benjamin's code and converted it to use the Operating System Independent features of
EPICS 3.14.

Marty Kraimer
Marty started with Eric's version and made changes to support secondary addressing and to replace ioctl
with code to support general bus management, universal commands, and addressed commands.

Pete Owens
Pete, for the Diamond Light Source, did a survey of several types of device/driver support packages for
serial devices. Diamond decided to use the streams support developed by Dirk Zimoch.

Dirk Zimoch
Dirk developed streams, which has a single device support model, but supports arbitrary low level
message based drivers, i.e. GPIB, serial, etc.

Jun−ichi Odagare
Jun−ichi developed NetDev, a systems that provides EPICS device support for network based devices. It
has a single device support model but provides a general framework for communicating with network
based devices.

Overview of asynDriver

asynDriver is a software layer between device specific code and communication drivers that send/receive
messages to/from devices. asynDriver defines the following terminology:

interface

All communication between software layers is done via interfaces. An interface definition is a C language
structure consisting entirely of function pointers. An asynDriver interface is analogous to a C++ or Java
pure virtual interface. Although the implementation is in C, the spirit is object oriented. Thus this
document uses the term "member" rather than "function pointer".

•

port

A communication entity over which messages are sent. Whenever this document uses the word port
without a qualifier, it means a communication port. A port provides access to one or more devices.

•

device

A device (instrument) connected to a port. For example if the port driver is a GPIB interface it can have
up to 15 devices connected to each port. Whenever this document uses the word device without a
quailifier, it means something that is connected to a port.

•

asynDriver

This is the name for the support described in this manual. It is also the name of the header file that
describes the core interfaces

•

asynManager

The code which implements the asynManager and asynTrace methods..

•

Standard interfaces are defined so that most device specific code can communicate with multiple port drivers. If
device support does all it's communication via reads and writes consisting of 8 bit bytes (octets) then it should
work with almost all port drivers. If device support requires more complicated support then the types of ports will
be more limited. Additional interfaces can be defined. It is expected that additional standard interfaces will be

asynDriver

Overview of asynDriver 3

defined.

Examples of ports are GPIB controllers, serial ports, Ethernet ports, etc. One or more devices can be attached to a
port. For example only one device can be attached to an RS−232 port but up to 15 devices can be attached to a
GPIB port.

Multiple layers can exist between device specific code and a port driver. A software layer calls interposeInterface
in order to be placed between device specific code and drivers.

For more complicated protocols additional layers can be created. For example GPIB support is implemented as an
asynGpib interface which is called by user code and a asynGpibPort interface which is called by asynGpib.

A driver can implement multiple interfaces. For example asynGpib implements asynCommon, asynOctet, and
asynGpib.

asynManager uses the Operating System Independent features of EPICS base. It is, however, independent of
record/device support. Thus it can be used by other code, e.g. a sequence program.

Standard Asynchronous Driver Interfaces

This section briefly describes the interfaces provided by asynManager and standard interfaces implemented by
port drivers. asynManager members are called by normal threads. Except for asynCommon:report, port driver
methods can only be called from the user supplied callback supplied in the call to createAsynUser..

The interfaces are:

asynManager This provides services for communicating with a device connected to a port. The following
services are provided

report − A method that reports the status of all ports.♦
A thread for each communication port.♦
Methods to connect/disconnect to a device or port.♦
A method for locating port driver interfaces.♦
queueRequest. This is a non−blocking method, i.e. it can be called from scan threads. A callback
specified by the user is called by the interface thread. The user callback can then make an
arbitrary number of calls to the driver. These calls may be blocking calls.

♦

Methods that provide a transaction service, i.e. members lock/unlock can lock out other users
while multiple queueRequests are issued.

♦

Methods for registering ports and interfaces.♦
Methods called by a driver when it connects or disconnects from a port or device.♦
A Method for interposing an interface between clients and drivers.♦
Methods for enable and autoConnect.♦

•

asynCommon asynCommon is a set of methods that must be implemented by all drivers. The methods
are:

report − Report status of port.♦
connect − Connect to the port or device.♦
disconnect − Disconnect from the port or device.♦
setOption − Set device option.♦
showOption − Show device option.♦

•

asynOctet asynOctet is a set of methods implemented by any driver that accepts octet messages (messages
consisting of 8−bit bytes) and returns octet responses. This interface will be sufficient for most device

•

asynDriver

4 Standard Asynchronous Driver Interfaces

specific code. For example the code for streams protocol files needs only this interface. The term octet is
used instead of ASCII because the only requirement is that messages consist of 8−bit bytes. The methods
are:

read − input a message. The routine returns the number of 8−bit bytes read from the device or −1
to indicate error.

♦

write − output a message. The routine returns the number of 8−bit bytes written to the device or
−1 to indicate error.

♦

flush − if input is buffered flush the buffer.♦
setEos − Specify an end of message string for detecting the end of input messages.♦
getEos − Get the currect end of message string.♦

asynTrace asynTrace is a set of methods for generating diagnostic messages.•
asynSyncIO asynSyncIO is a set of methods for performing synchronous I/O using asynManager and
asynOctet. This interface is convenient for code that is running in a thread that is allowed to wait.
Examples include motor drivers, SNL programs and the shell commands described later in this document.
The methods are:

connect − connect to a device and port, create asynUser for use by other methods.♦
openSocket− open a TCP/IP or UDP/IP socket and port, creating an asyn port.♦
read − read device, wait for response. Optionally flush input before the read, and optionally set
end of message string. The routine returns the number of 8−bit bytes read from the device or −1
to indicate error.

♦

write − write device, wait for response. The routine returns the number of 8−bit bytes written to
the device or −1 to indicate error.

♦

writeRead − perform a "write" and then a "read" as an atomic operation. The routine returns the
number of 8−bit bytes read from the device or −1 to indicate error.

♦

flush − if input is buffered flush the buffer, wait for completion.♦

•

Overview

During initialization port drivers registers each communication port as well as all supported interfaces.

User code creates an asynUser by calling pasynManager−>createAsynUser(). The address of the asynUser is
passed to most other asynDriver methods.

User code connects to a device, which is located located at some address on a port, and communicates with the
device via combination of asynManager and one or more interfaces.

User code communicates with drivers via the following method:

It calls:

 pasynManager−>queueRequest(...)

1.

The callback specified in createAsynUser calls the driver via one of the driver interfaces.2.

Comments:

Streams, devAscii, and mpfSerial need only asynManager and asynOctet. devGpib needs only
asynManager, asynCommon, asynOctet, and asynGpib.

1.

It is expected that most users will connect to these interfaces via device support. However other code can
call it. Examples are sequence programs, test programs, utility commands, etc.

2.

Device support can consist of more than one type of support. For example most functions could be3.

asynDriver

Overview 5

accessed via streams but asynGpib could be used to handle SRQs.

asynDriver Structures and Interfaces

asynDriver.h describes the following:

asynStatus − An enum that describes the status returned by many methods.•
asynException − An enum that describes exceptions.•
asynQueuePriority − An enum that describes the queue priorities,•
asynUser − A struture that contains generic information and is the "handle" for calling most methods.•
asynInterface − a structure that describes an interface.•
asynManager − An interface for communicating with asynDriver.•
asynCommon − An interface providing methods that must be implemented by all low level drivers.•
asynOctet − An interface providing I/O methods that most low level drivers implement.•
asynTrace − An interface plus associated functions and definitions that implement the trace facility.•

asynStatus

Defines the status returned by most methods. If a method returns a status other than asynSuccess and one of the
arguments to the method is pasynUser then the method is expected to write a message into
pasynUser−>errorMessage.

typedef enum {
 asynSuccess,asynTimeout,asynOverflow,asynError
}asynStatus;

asynStatus

asynSuccessThe request was successfull.

asynTimeout The request failed with a timeout.

asynOverflow
The caller did not supply a buffer large enough to hold all input. What happens to the remaining
bytes depends on the low level driver.

asynError Some other error occured.

asynException

Defines the exceptions for method exceptionOccurred

typedef enum {
 asynExceptionConnect,asynExceptionEnable,asynExceptionAutoConnect,
 asynExceptionTraceMask,asynExceptionTraceIOMask,
 asynExceptionTraceFile,asynExceptionTraceIOTruncateSize
} asynException;

asynException

asynExceptionConnect The connection state of the port or device has changed.

asynExceptionEnable The enable state of the port or device has changed.

asynExceptionAutoConnect The autoConnect state of the port or device has changed.

asynExceptionTraceMask The traceMask for the port or device has changed.

asynDriver

6 asynDriver Structures and Interfaces

asynExceptionTraceIOMask The traceIOMask for the port or device has changed.

asynExceptionTraceFile The trace file for the port or device has changed.

asynExceptionTraceIOTruncateSizeThe traceIOTruncateSize for the port or device has changed.

asynQueuePriority

This defines the priority passed to queueRequest.

typedef enum {
 asynQueuePriorityLow,asynQueuePriorityMedium,asynQueuePriorityHigh,asynQueuePriorityConnect
}asynQueuePriority;

asynQueuePriority

asynQueuePriorityLow Lowest queue priority.

asynQueuePriorityMediumMedium queue priority.

asynQueuePriorityHigh High queue priority.

asynQueuePriorityConnect
Queue a connect or disconnect request. This priority must be used only for
connect/disconnect requests.

asynUser

Describes a structure that user code passes to most asynManager and driver methods. Code must allocate and free
an asynUser by calling asynManager:createAsynUser and asynManager:freeAsynUser.

typedef struct asynUser {
 char *errorMessage;
 int errorMessageSize;
 /* The following must be set by the user */
 double timeout; /*Timeout for I/O operations*/
 void *userPvt;
 /* The following are for additional information from method calls */
 int auxStatus; /*For auxillary status*/
}asynUser;

asynUser

errorMessage

When either asynManager or a driver returns an error, it should put an error message into
errorMessage via a call to

epicsSnprintf(pasynUser−>errorMessage,pasynUser−>errorMessageSize,"<format>",...)

errorMessageSizeThe size of errorMessage. The user can not change this value.

timeout
The number of seconds before timeout for I/O requests. This is set by the user and can be changed
between calls to drivers. The user must provide a non zero value or many low level drivers will
timeout. A timeout value < 0.0 means wait forever.

puserPvt
For use by the user. The user should set this immediately after the call to
pasynManager−>createAsynUser. If this is changed while asynUser is queued, the results are
undefined, e.g. it could cause a crash.

auxStatus
Any method can provide additional return information in auxStatus. The meaning is determined by
the method.

asynDriver

asynQueuePriority 7

asynInterface

This defines an interface registered with asynPortManager:registerPort or asynManager:interposeInterface.

typedef struct asynInterface{
 const char *interfaceType; /*For example asynCommonType*/
 void *pinterface; /*For example pasynCommon */
 void *drvPvt;
}asynInterface;

asynInterface

interfaceTypeA character string describing the interface.

pinterface A pointer to the interface. The user must cast this to the correct type.

drvPvt For the exclusive use of the code that called registerPort or interposeInterface.

asynManager

This is the main interface for communicating with asynDriver.

typedef void (*userCallback)(asynUser *pasynUser);
typedef void (*exceptionCallback)(asynUser *pasynUser,asynException exception);

typedef struct asynManager {
 void (*report)(FILE *fp,int details);
 asynUser *(*createAsynUser)(userCallback queue,userCallback timeout);
 asynStatus (*freeAsynUser)(asynUser *pasynUser);
 asynStatus (*isMultiDevice)(asynUser *pasynUser,
 const char *portName,int *yesNo);
 /* addr = (−1,>=0) => connect to (port,device) */
 asynStatus (*connectDevice)(asynUser *pasynUser,
 const char *portName,int addr);
 asynStatus (*disconnect)(asynUser *pasynUser);
 asynStatus (*exceptionCallbackAdd)(asynUser *pasynUser,
 exceptionCallback callback);
 asynStatus (*exceptionCallbackRemove)(asynUser *pasynUser);
 asynInterface *(*findInterface)(asynUser *pasynUser,
 const char *interfaceType,int interposeInterfaceOK);
 asynStatus (*queueRequest)(asynUser *pasynUser,
 asynQueuePriority priority,double timeout);
 asynStatus (*cancelRequest)(asynUser *pasynUser,int *wasQueued);
 asynStatus (*lock)(asynUser *pasynUser); /*lock portName,addr */
 asynStatus (*unlock)(asynUser *pasynUser);
 asynStatus (*getAddr)(asynUser *pasynUser,int *addr);
 /* drivers call the following*/
 asynStatus (*registerPort)(const char *portName,
 int multiDevice,int autoConnect,
 unsigned int priority,unsigned int stackSize);
 asynStatus (*registerInterface)(const char *portName,
 asynInterface *pasynInterface);
 asynStatus (*exceptionConnect)(asynUser *pasynUser);
 asynStatus (*exceptionDisconnect)(asynUser *pasynUser);
 /*any code can call the following*/
 asynStatus (*interposeInterface)(const char *portName, int addr,
 asynInterface *pasynInterface,
 asynInterface **ppPrev);
 asynStatus (*enable)(asynUser *pasynUser,int yesNo);
 asynStatus (*autoConnect)(asynUser *pasynUser,int yesNo);
 asynStatus (*isConnected)(asynUser *pasynUser,int *yesNo);

asynDriver

8 asynInterface

 asynStatus (*isEnabled)(asynUser *pasynUser,int *yesNo);
 asynStatus (*isAutoConnect)(asynUser *pasynUser,int *yesNo);
}asynManager;
epicsShareExtern asynManager *pasynManager;

asynManager

report
Reports status about the asynPortManager. It also calls asynCommon:report for each
registered port driver.

createAsynUser

Creates an asynUser. The caller specifies two callbacks, one for successful
queueRequests and one if a queueRequest has a timeout. The timeout callback is
optional. If it is not provided and a queueRequest with a non−zero timeout is
requested, an error message is issued and no timeout will occur. errorMessageSize
characters are allocated for errorMessage. The amount of storage can not be changed.
This method doesn't return if it is unable to allocate the storage.

freeAsynUser
Free an asynUser. The user must free an asynUser only via this call. The call will fail
if the asynUser is connected to a device.

isMultiDevice
Does the port support multiple devices? This method can be called before calling
connectDevice.

connectDevice

Device code calls this to connect to a device. It passes the name of the
communication port and the address of the device. The port Name is the same as that
specified in the call to registerPort. The call will fail if the asynUser is already
connected to a device. If the port does not support multiple devices than addr is
ignored. The call will fail if the asynUser is already connected to a device.
connectDevice only connects a user to the port driver for the portName,addr. The port
driver may or may not be connected to the actual device. Thus connectDevice and
asynCommon:connect are completely different.

See the Theory of Operation section for a description of the difference between single
and multi−device port drivers.

disconnect
Disconnect from the port,addr to which connectDevice connected. The call will fail if
the asynUser is queued or locked or has an exception callback. Note that
asynManager:disconnect and asynCommon:disconnect are completely different.

exceptionCallbackAdd
The callback will be called whenever one of the exceptions defined by asynException
occurs. The callback can call isConnected, isEnabled, or isAutoConnect to find the
new state.

exceptionCallbackRemoveThe callback is removed. This must be called before disconnect.

findInterface Find a driver interface. If interposeInterfaceOK is true then findInterface returns the
last interface registered or interposed. Otherwise the interface registered by
registerPort is returned. It returns 0 if the interfaceType is not supported.

The user needs the address of the drivers interface and of pdrvPvt so that calls can be
made to the driver. For example:

asynInterface *pasynInterface;
asynOctet *pasynOctet;
void *pasynOctetPvt;
...
pasynInterface = pasynManager−>findInterface(
 pasynUser,asynOctetType,1);
if(!pasynInterface) { /*error do something*/}

asynDriver

asynInterface 9

pasynOctet = (asynOctet *)pasynInterface−>pinterface;
pasynOctetPvt = pasynInterface−>pdrvPvt;
/* The following call must be made from a callback */
pasynOctet−>read(pasynOctetPvt,pasynUser,...

queueRequest

A device support thread never calls a driver directly. Instead it calls queueRequest.
After the thread associated with the port takes this request from the queue, it calls the
queue callback specified in the call to createAsynUser. The callback makes calls to
the driver. If the asynUser is already on a queue, asynError is returned. The timeout
starts when the request is queued. A value less than or equal to 0.0 means no timeout.
The request is removed from the queue before the callback is called. Thus callbacks
are allowed to unlock and issue new queue requests. The priority
asynQueuePriorityConnect must be used for asynCommon:connect and
asynCommon:disconnect calls and must NOT be used for any other calls.

cancelRequest

If a asynUser is queued remove it from the queue. If it is not on a queue nothing is
done. In particular if the callback is active, this call has no effect. If the return value is
asynSuccess, then wasQueued (0,1) if a request (was not, was) canceled, i.e. removed
from the queue.

lock/unlock

lock/unlock are used to block other users from accessing a device while a user is
making a series of queueRequests. Only the addr specified in the connectDevice
request is locked. asynManager locks when a queueRequest for is taken from the
queue. At that point all other entries in the queue must wait until unlock is called by
the same pasynUser that locked. lock/unlock fail if a request is currently queued. The
addr argument passed to connectDevice determines if the port or only a device is
locked.

getAddr

*addr is set equal to the address which the user specified in the call to connectDevice.

See the Theory of Operation section for a description of the difference between single
and multi−device port drivers.

registerPort

This method is called by drivers. A call is made for each communication interface
instance. multiDevice is (0,1) of the driver (does not, does) support multiple devices.
autoConnect, which is (0,1) for (no,yes), provides the initial value for the port and all
devices connected to the port. If priority is 0 then a default will be assigned. If
stackSize is 0 a default is assigned. The portName argument specifies the name by
which the upper levels of the asyn code will refer to this communication interface
instance.

registerInterface This is called by port drivers for each supported interface.

exceptionConnect
This method must be called by the driver when and only when it connects to a port or
device.

exceptionDisconnect
This method must be called by the driver when and only when it disconnects from a
port or device.

interposeInterface This is called by a software layer between client code and the port driver. For
example if a device echos writes then a software module that issues a read after each
write could be created and call interposeInterface for interface asynOctet.

Multiple interposeInterface calls for a port/addr/interface can be issued. *ppPrev is set
to the address of the previous asynInterface. Thus the software module that last called
interposeInterface is called by user code. It in turn can call the software module that
was second last to call interposeInterface. This continues until the actual port driver is

asynDriver

10 asynInterface

called.

interposeInterface can also be called with an asynInterface that has not been
previously registered or replaced. In this case *ppPrev will be null. Thus new
interfaces that are unknown to the low level driver can be implemented.

enable
If enable is set yes than queueRequests are not dequeued unless their queue timeout
occurs.

autoConnect
If autoConnect is true when asynThread is ready to take a request from a queue and
the port or device is not connected, asynManager calls pasynCommon−>connect. See
the discussion of Flow of Control below for details.

isConnected *yesNo is set to (0,1) if the port or device (is not, is) connected.

isEnabled *yesNo is set to (0,1) if the port or device (is not, is) enabled.

isAutoConnect
*yesNo is set to (0,1) if the portThread (will not, will) autoConnect for the port or
device.

asynCommon

/* Device Interface supported by ALL asyn drivers*/
#define asynCommonType "asynCommon"
typedef struct asynCommon {
 void (*report)(void *drvPvt,FILE *fp,int details);
 /*following are to connect/disconnect to/from hardware*/
 asynStatus (*connect)(void *drvPvt,asynUser *pasynUser);
 asynStatus (*disconnect)(void *drvPvt,asynUser *pasynUser);
 /*The following are generic methods to set/get device options*/
 asynStatus (*setOption)(void *drvPvt, asynUser *pasynUser,
 const char *key, const char *val);
 asynStatus (*getOption)(void *drvPvt, asynUser *pasynUser,
 const char *key, char *val, int sizeval);
}asynCommon;

asynCommon describes the methods that must be implemented by drivers.

asynCommon

report
Generates a report about the hardware device. This is the only asynCommon method that does not
have to be called by the queueRequest callback.

connect
Connect to the hardware device or communication path. The queueRequest must specify priority
asynQueuePriorityConnect.

disconnect
Disconnect from the hardware device or communication path. The queueRequest must specify
priority asynQueuePriorityConnect.

setOption
This is a generic routine for setting a device option. The arguments are key,value pairs. The meaning
is driver specific. If a driver does not accept options it can return asynError.

getOption
This is a generic routine for getting a device option. The value for the key is written into val. If a
driver does not accept options it can return asynError.

asynOctet

/* Device Interface supported by low level octet drivers. */
#define asynOctetType "asynOctet"
typedef struct asynOctet{
 asynStatus (*read)(void *drvPvt,asynUser *pasynUser,

asynDriver

asynCommon 11

 char *data,int maxchars,int *nbytesTransfered);
 asynStatus (*write)(void *drvPvt,asynUser *pasynUser,
 const char *data,int numchars,int *nbytesTransfered);
 asynStatus (*flush)(void *drvPvt,asynUser *pasynUser);
 asynStatus (*setEos)(void *drvPvt,asynUser *pasynUser,
 const char *eos,int eoslen);
 asynStatus (*getEos)(void *drvPvt,asynUser *pasynUser,
 char *eos, int eossize, int *eoslen);
}asynOctet;

NOTE: The name octet is used instead of ASCII because it implies that communication is done via 8−bit bytes.

asynOctet describes the methods implemented by drivers that use octet strings for sending commands and
receiving responses from a device.

asynOctet

read Read a message from the device. *nbytesTransfered is the number of 8−bit bytes read from the device.

write Send a message to the device. *nbytesTransfered is the number of 8−bit bytes sent to the device.

flush Flush the input buffer.

setEosSet End Of String. For example "\n". Note that gpib drivers usually accept at most a one character string.

getEosGet the current end of string.

Trace Interface

/*asynTrace is implemented by asynManager*/
/*All asynTrace methods can be called from any thread*/
/* traceMask definitions*/
#define ASYN_TRACE_ERROR 0x0001
#define ASYN_TRACEIO_DEVICE 0x0002
#define ASYN_TRACEIO_FILTER 0x0004
#define ASYN_TRACEIO_DRIVER 0x0008
#define ASYN_TRACE_FLOW 0x0010

/* traceIO mask definitions*/
#define ASYN_TRACEIO_NODATA 0x0000
#define ASYN_TRACEIO_ASCII 0x0001
#define ASYN_TRACEIO_ESCAPE 0x0002
#define ASYN_TRACEIO_HEX 0x0004

/* asynPrint and asynPrintIO are macros that act like
 int asynPrint(asynUser *pasynUser,int reason, const char *format, ...);
 int asynPrintIO(asynUser *pasynUser,int reason,
 const char *buffer, int len, const char *format, ...);
*/
typedef struct asynTrace {
 /* lock/unlock are only necessary if caller performs I/O other then*/
 /* by calling asynTrace methods */
 asynStatus (*lock)(asynUser *pasynUser);
 asynStatus (*unlock)(asynUser *pasynUser);
 asynStatus (*setTraceMask)(asynUser *pasynUser,int mask);
 int (*getTraceMask)(asynUser *pasynUser);
 asynStatus (*setTraceIOMask)(asynUser *pasynUser,int mask);
 int (*getTraceIOMask)(asynUser *pasynUser);
 asynStatus (*setTraceFILE)(asynUser *pasynUser,FILE *fp);
 FILE *(*getTraceFILE)(asynUser *pasynUser);
 asynStatus (*setTraceIOTruncateSize)(asynUser *pasynUser,int size);

asynDriver

12 Trace Interface

 int (*getTraceIOTruncateSize)(asynUser *pasynUser);
 int (*print)(asynUser *pasynUser,int reason, const char *pformat, ...);
 int (*printIO)(asynUser *pasynUser,int reason,
 const char *buffer, int len,const char *pformat, ...);
}asynTrace;
epicsShareExtern asynTrace *pasynTrace;

asynTrace

asynDriver provides a trace facility with the following attributes:

Tracing is turned on/off for individual devices, i.e. a portName,addr•
Trace has a global trace mask for asynUsers not connected to a port ot port,addr.•
The output is sent to a file or to stdout.•
A mask determines the type of information that can be displayed. The various choices can be ored
together.

ASYN_TRACE_ERROR Run time errors are reported, e.g. timeouts.♦
ASYN_TRACEIO_DEVICE High level device support reports I/O activity.♦
ASYN_TRACEIO_FILTER Any layer between device support and the low level driver reports
any filtering it does on I/O.

♦

ASYN_TRACEIO_DRIVER Low level driver reports I/O activity.♦
ASYN_TRACE_FLOW Report logic flow. Device support should report all queue requests,
callbacks entered, and all calls to drivers. Layers between device support and low level drivers
should report all calls they make to lower level drivers. Low level drivers report calls they make
to other support.

♦

•

Another mask determines how message buffers are printed. The various choices can be ored together.
ASYN_TRACEIO_NODATA Dont print any data from the message buffers♦
ASYN_TRACEIO_ASCII Print with a "%s" style format.♦
ASYN_TRACEIO_ESCAPE Call epicsStrPrintEscaped.♦
ASYN_TRACEIO_HEX Print each byte with " %2.2x".♦

•

In order for the trace facility to perform properly, device support, and all drivers must use the trace facility.
Device and driver support can directly call the asynTrace methods. The asynPrint and asynPrintIO macros are
provided so that it is easier for device/driver support. Support can have calls like.

 asynPrintIO(pasynUser,ASYN_TRACE_FLOW,"%s Calling queueRequest\n",
 someName);

The asynPrintIO call is designed for device support or drivers that issue read or write requests. They make calls
like:

 asynPrintIO(pasynUser,ASYN_TRACEIO_DRIVER,data,nchars,"%s nchars %d",someName,nchars);

The asynTrace methods are implemented by asynManager. These methods can be used by any code that has
created an asynUser and connected to a device. All methods can be called by any thread. If a thread performs all
I/O via calls to print or printIO, then it does not have to call lock or unlock. If it does want to do it's own I/O, it
must lock before any I/O and unlock after. For example:

 pasynTrace−>lock(pasunUser);
 fd = pasynTrace−>getTraceFILE(pasunUser);
 /*perform I/O of fd */
 pasynTrace−>unlock(pasunUser);

asynDriver

asynTrace 13

If the asynUser is not connected to a port, i.e. pasynManager−>connectDevice has not been called, then a "global"
device is assumed. This is usefull when asynPrint is called before connectDevice.

asynTrace

lock/unlock

These are only needed if some code wants to do it's own I/O instead of using print and
printIO. The set methods, print, and printIO all lock while performing their operations.
The get routines do not lock but except for getTraceFILE they are safe. The worst that
happens is that the user gets a little more or a little less output.

setTraceMask
Set the trace mask. Normally set by the user requesting it via a shell command or the
devTrace device support.

getTraceMask
Get the trace mask. Support that wants to issue trace messages calls this to what trace
options have been requested.

setTraceIOMask
Set the traceIO mask. Normally set by the user requesting it via a shell command or the
devTrace device support.

getTraceIOMask
Get the traceIO mask. Support that wants to issue it's own IO messages instead of
calling asynPrintIO should call this and honor the mask settings. Most code will not
need it.

setTraceFILE

Set the stream to use for output. A NULL argument means use errlog. Normally set by
the user requesting it via a shell command or by the devTrace device support. If the
current output stream is none of (NULL, stdout, stderr) then the current output stream is
closed before the new stream is used.

getTraceFILE

Get the file descriptor to use for output. Support that wants to issue it's own IO
messages instead of calling asynPrintIO should call this and honor the mask settings. In
this case lock must have been called first. Most code will not need it. If return value is 0
then ouput should be directed to errlog

setTraceIOTruncateSize

Determines how much data is printed by printIO. In all cases it determines how many
bytes of the buffer are displayed. The actual number of characters printed depends on
the traceIO mask. For example ASYN_TRACEIO_HEX results in 3 characters being
printed for each byte. Normally set by the user requesting it via a shell command or the
devTrace device support.

getTraceIOTruncateSize
Get the current truncate size. Called by asynPrintIO. Code that does it's own I/O should
also support the traceIO mask.

print
If reason ored with the current traceMask is not zero then the message is printed. Most
code should call asynPrint instead of calling this method

printIO
If reason ored with the current traceMask is not zero then the message is printed. If len
is >0 then the buffer is printed using the traceIO mask and getTraceIOTruncateSize to
decide how to print. Most code should call asynPrintIO instead of calling this method

Synchronous Interface to asynDriver

asynSyncIO.h describes the following:

/* Synchronous Interface to the asynManager and asynOctet interfaces. */
typedef struct asynSyncIO {
 asynStatus (*connect)(const char *port, int addr, asynUser **ppasynUser);
 asynStatus (*openSocket)(const char *server, int port,
 char **portName);
 int (*write)(asynUser *pasynUser, char const *buffer, int buffer_len,

asynDriver

14 Synchronous Interface to asynDriver

 double timeout);
 int (*read)(asynUser *pasynUser, char *buffer, int buffer_len,
 const char *ieos, int ieos_len, int flush, double timeout);
 int (*writeRead)(asynUser *pasynUser,
 const char *write_buffer, int write_buffer_len,
 char *read_buffer, int read_buffer_len,
 const char *ieos, int ieos_len, double timeout);
 asynStatus (*flush)(asynUser *pasynUser);
} asynSyncIO;
epicsShareExtern asynSyncIO *pasynSyncIO;

asynSyncIO provides a convenient interface for software that needs to perform "synchronous" I/O to an asyn
device, i.e. that starts an I/O operation and then blocks while waiting for the response. The code does not need to
handle callbacks or the understand the details of the asynManager and asynOctet interfaces. Examples include
motor drivers running in their own threads, SNL programs, and the shell commands described later in this
document.

asynSyncIO

connect Connects to an asyn port and address, returns a pointer to an asynUser structure.

openSocket
Opens a new connection to a TCP/IP or UDP/IP socket, returning the name of a newly created asyn
port. The name of the port created is of the form "server:port [protocol]", i.e. "corvette:21" or
"164.54.160.50:21" or "corvette:21 UDP".

write Calls asynOctet−>write and waits for the operation to complete or time out.

read
Calls asynOctet−>setEos (if ieos_len is non−zero), asynOctet flush (if flush=1), and
asynOctet−>read. Waits for the operation to complete or time out.

writeRead
Calls asynOcter−>write, asynOctet−>setEos (if ieos_len is non−zero), asynOctet flush (if flush=1),
and asynOctet−>read. Waits for the operations to complete or time out.

flush Calls asynOctet−>flush and waits for the operation to complete.

Theory of Operation

Multiple Device vs Single Device port drivers

When a low level driver calls registerPort it must say if it supports multiple devices. This determines how the addr
argument to connectDevice is handled and what getAddr returns.

multiDevice false

The addr argument to connectDevice is ignored and getAddr always returns −1

•

multiDevice true

If connectDevice is called with addr<0 the connection is to the port and getAddr always returns −1. If
addr>=0 then the caller is connected to the device at the specified address. getAddr will return this
address.

•

Connection Management

asynManager keeps track of the following states:

asynDriver

Theory of Operation 15

connection

Is the port or device connected? This state is initialized to disconnected.

•

enabled

Is the port or device enabled? This state is initialized to enabled.

•

autoConnect

Does asynManager call connect if it finds the port or device disconnected. This is initialized to the state
specified in the call to registerPort.

•

If the port does not support multiple devices then port and device status are the same. If the port does support
multiple devices than asynManager keeps the states for the port and for every device connected to the port.

Whenever any of the states change for a port or device than all users that called exceptionCallbackAdd for that
port or device are called.

Low level drivers must call pasynManager:exceptionConnect whenever they connect to a port or port,addr and
must call exceptionDisconnect whenever they disconnect.

Flow of Control

The methods asynManager:report and asynCommon:report can be called by any thread but the caller is blocked
until the report finishes. The following discussion applys to all methods except report.

The asynManager methods can be called by any thread including portThread. None of these methods except
report block.

The methods for interfaces asynCommon (except report), asynOctet, and asynGpib must only be called by the
queue callback specified in the call to createAsynUser.

portThread

When a low level driver calls registerPort, asynManager creates a thread for the port. Each portThread has it's
own set of queues for the calls to queueRequest. portThread runs forever implementing the following algorithm:

Wait for work by calling epicsEventMustWait. Other code such as queueRequest call epicsEventSignal.1.
If the port is disabled return 1.2.
For every element in queue asynQueuePriorityConnect:

Remove the element from the queue.♦
Calls the user's callback♦

3.

If the port is not connected and autoConnect is true for the port then attempt to connect to the port.4.
If the port is still not connected return 1.5.
For each element of the queues asynQueuePriorityHigh,...,asynQueuePriorityLow.

If disabled skip this element.♦
If not connected and autoConnect is true for the device then attempt to connect to the device.♦
If not connected skip this element.♦
If locked and not lock holder skip this element.♦
If not locked and user has requested lock then set locked,♦
remove from queue and call user callback.♦

6.

asynDriver

16 Flow of Control

The actual code is more complicated because it unlocks before it calls code outside asynManager. This means that
the queues can be modified and exceptions may occur.

asynRecord: Generic EPICS Record Support

A special record type asynRecord is provided. Details are described in asynRecord. This section provides a brief
description of how to use it.

Each IOC can load one or more instances of asynRecord. An example is:

cd ${ASYN}
dbLoadRecords("db/asynRecord.db","P=asyn,R=Test,PORT=L0,ADDR=15,IMAX=0,OMAX=0")

The example creates a record with name "asynTest" (formed from the concatenation of the P and R macros) that
will connect to port "L0" and addr 15. After the ioc is started, it is possible to change PORT and/or ADDR. Thus
a single record can be used to access all asyn devices connected to the IOC. Multiple records are only needed if
one or more devices need a dedicated record.

An medm display is available for accessing an asynRecord. It is started as follows:

cd <asyn>/medm
medm −x −macro "P=asyn,R=Test" asynRecord.adl

The following medm display appears.

asynDriver

asynRecord: Generic EPICS Record Support 17

Example

The following reads from an device via octet messages.

#include <asynDriver.h>
...
#define BUFSIZE 80
typedef struct myData {
 asynOctet *pasynOctet;
 void *pdrvPvt;
 char buffer[BUFSIZE];
}myData;

void queueCallback(asynUser *pasynUser)
 myData *pmydata = (myData *)puserPvt;

asynDriver

18 Example

 asynOctet *pasynOctet = pmydata−>pasynOctet;
 void *pdrvPvt = pmydata−>pdrvPvt;
 asynStatus status;
 int retlen;

 asynPrint(pasynUser,ASYN_TRACE_FLOW,"queueCallback entered\n");
 status = pasynOctet−>setEos(pdrvPvt,pasynUser,"\n",1);
 if(status!=asynSuccess) {
 asynPrint(pasynUser,ASYN_TRACE_ERROR,
 "queueCallback setEos failed %s\n",pasynUser−>errorMessage);
 }
 status = pasynOctet−>read(pdrvPvt,pasynUser,pmydata−>buffer,BUFSIZE,&retlen);
 if(status!=asynSuccess || retlen<=0) {
 asynPrint(pasynUser,ASYN_TRACE_ERROR,
 "queueCallback read failed %s\n",pasynUser−>errorMessage);
 } else {
 asynPrintIO(pasynUser,ASYN_TRACEIO_DEVICE,
 pmydata−>buffer,BUFSIZE,
 "queueCallback read returned: retlen %d data %s\n",
 retlen,pmydata−>buffer);
 }
}

void mainThread(void)
{
 myData *pmyData;
 asynUser *pasynUser;
 asynStatus status;
 asynInterface *pasynInterface;

 pmyData = calloc(1,sizeof(myData));
 pasynUser = pasynManager−>createAsynUser(queueCallback,0);
 pasynUser−>userPvt = pmyData;
 status = pasynManager−>connectDevice(pasynUser,"serialPort1",0)
 if(status!=asynSuccess) {
 printf("can't connect to serialPort1 %s\n",pasynUser−>errorMessage);
 exit(1);
 }
 pasynInterface = pasynManager−>findInterface(
 pasynUser,asynOctetType,1);
 if(!pasynInterface) {
 printf("%s driver not supported\n",asynOctetType);
 exit(−1);
 }
 pmyData−>pasynOctet = (asynOctet *)pasynInterface−>pinterface;
 pmyData−>pdrvPvt = pasynInterface−>pdrvPvt;
 status = pasynManager−>queueRequest(pasynUser,asynQueuePriorityLow, 0.0);
 if(status) {
 asynPrint(pasynUser,ASYN_TRACE_ERROR,
 "queueRequest failed %s\n",pasynUser−>errorMessage);
 exit(1);
 }
 /*Note that callback will be called by another thread*/
 ...
}

The flow of control is as follows:

A port driver calls registerPort. This step is not shown in the above example.1.
mainThread allocates myData and an asynUser.2.
mainThread connects to a device and to the asynOctet interface for the port driver..3.

asynDriver

Example 19

When it is ready to communicate with the driver it calls queueRequest.4.
The thread associated with the port calls the callback which then calls the port driver's setEos and read
methods.

5.

Test Example

The asynDriver distribution includes code to test asynDriver. It is also an example of how to interface to
asynManager. The example resides in <top>/testApp and contains the following components:

Db/
 test.db
adl/
 test.adl
src/
 devAsynTest.c
 devAsynTest.dbd
 echoDriver.c
 interposeInterface.c

echoDriver is a port driver that echos messages it receives. It implements asynCommon and asynOctet. When
asynOctet:write is called it saves the message. When asynOctet:read is called the saved message is returned and
the message is flushed. echoDriverInit has an argument that determines if it acts like a multiDevice or single
device port driver.

test.db is a template containing three records: a calc record, which forward links to a stringout record which
forward links to a stringin record. The string records attach to the device support supplied by devAsynTest.c. The
stringout and stringin records share the same asynUser. When the stringout record processes it:

fetches the current value from the calc record (converted to ascii).•
calls pasynManager−>lock.•
Calls pasynManager−>queueRequest.•
The callback calls pasynOctet−>write and then asks for the record to complete processing.•
The stringout record forward links to the stringin record•

The stringin records does the following:

Calls pasynManager−>queueRequest.•
The callback routine:

calls pasynOctet−>read♦
Checks what it received vs what the stringout record wrote. If the values match it sets it's VAL
field to "OK", otherwise it writes an error message into VAL.

♦

Asks for the record to complete processing.♦

•

The stringin record calls pasynManager−>unlock.•

devAsynTest also does additional checking for connect state, enable/disable.

Executing "medm −x test.adl" produces the display:

asynDriver

20 Test Example

It assumes that an ioc has been started via:

cd <top>/iocBoot/ioctest
../../bin/solaris−sparc/test st.cmd

This starts two versions of echoDriver as port "A" and "B". port A acts as single device port. port B acts as a
multiDevice port that has two devices. For each of the three possible devices, the st.cmd file starts up two sets of
records from test.db The st.cmd file also loads a set of records from asynTest.db for port A and for port B and for
each of the two devices attached to port B. It also loads a set of records from asynGeneric.db.

asynGpib

GPIB has additional features that are not supported by asynCommon and asynOctet. asynGpib defines two
interfaces.

asynGpib − This is the interface that device support calls.. It provides the following:
A set of GPIB specific methods that device support can call.♦
Code that handles generic GPIB functions like SRQ polling.♦
A registerPort method which is called by GPIB port drivers.♦

•

asynGpibPort − A set of methods implemented by GPIB drivers•

asynGpibDriver.h

asynGpibDriver.h contains the following definitions:

#include "asynDriver.h"
#define asynGpibType "asynGpib"
/* GPIB drivers */
typedef void (*srqHandler)(void *userPrivate,int gpibAddr,int statusByte);
typedef struct asynGpib asynGpib;
typedef struct asynGpibPort asynGpibPort;
/*asynGpib defines methods called by gpib aware users*/
struct asynGpib{
 /*addressedCmd,...,ren are just passed to device handler*/
 asynStatus (*addressedCmd) (void *drvPvt,asynUser *pasynUser,
 const char *data, int length);
 asynStatus (*universalCmd) (void *drvPvt,asynUser *pasynUser, int cmd);
 asynStatus (*ifc) (void *drvPvt,asynUser *pasynUser);
 asynStatus (*ren) (void *drvPvt,asynUser *pasynUser, int onOff);
 /* The following are implemented by asynGpib */
 asynStatus (*registerSrqHandler)(void *drvPvt,asynUser *pasynUser,
 srqHandler handler, void *srqHandlerPvt);

asynDriver

asynGpib 21

 void (*pollAddr)(void *drvPvt,asynUser *pasynUser, int onOff);
 /* The following are called by low level gpib drivers */
 /*srqHappened is passed the pointer returned by registerPort*/
 void *(*registerPort)(
 const char *portName,
 int multiDevice,int autoConnect,
 asynGpibPort *pasynGpibPort, void *asynGpibPortPvt,
 unsigned int priority, unsigned int stackSize);
 void (*srqHappened)(void *asynGpibPvt);
};
struct asynGpibPort {
 /*asynCommon methods */
 void (*report)(void *drvPvt,FILE *fp,int details);
 asynStatus (*connect)(void *drvPvt,asynUser *pasynUser);
 asynStatus (*disconnect)(void *drvPvt,asynUser *pasynUser);
 asynStatus (*setOption)(void *drvPvt,asynUser *pasynUser,
 const char *key,const char *val);
 asynStatus (*getOption)(void *drvPvt,asynUser *pasynUser,
 const char *key,char *val,int sizeval);
 /*asynOctet methods passed through from asynGpib*/
 asynStatus (*read)(void *drvPvt,asynUser *pasynUser,
 char *data,int maxchars,int *nbytesTransfered);
 asynStatus (*write)(void *drvPvt,asynUser *pasynUser,
 const char *data,int numchars,int *nbytesTransfered);
 asynStatus (*flush)(void *drvPvt,asynUser *pasynUser);
 asynStatus (*setEos)(void *drvPvt,asynUser *pasynUser,
 const char *eos,int eoslen);
 asynStatus (*getEos)(void *drvPvt,asynUser *pasynUser,
 char *eos, int eossize, int *eoslen);
 /*asynGpib methods passed thrtough from asynGpib*/
 asynStatus (*addressedCmd) (void *drvPvt,asynUser *pasynUser,
 const char *data, int length);
 asynStatus (*universalCmd) (void *drvPvt, asynUser *pasynUser, int cmd);
 asynStatus (*ifc) (void *drvPvt,asynUser *pasynUser);
 asynStatus (*ren) (void *drvPvt,asynUser *pasynUser, int onOff);
 /*asynGpibPort specific methods */
 int (*srqStatus) (void *drvPvt);
 asynStatus (*srqEnable) (void *drvPvt, int onOff);
 asynStatus (*serialPollBegin) (void *drvPvt);
 int (*serialPoll) (void *drvPvt, int addr, double timeout);
 asynStatus (*serialPollEnd) (void *drvPvt);
};

asynGpib

asynGpib describes the interface for device support code. It provides gpib specific functions like SRQ handling. It
makes calls to asynGpibPort. Note that asynGpib.c also implements asynCommon and asynOctet.

asynGpib

addressedCmd The request is passed to the low level driver.

universalCmd The request is passed to the low level driver.

ifc The request is passed to the low level driver.

ren The request is passed to the low level driver.

registerSrqHandler
Register an srq handler for device. The handler will be called when an SRQ is detected for
that device.

pollAddr

asynDriver

22 asynGpib

Set SRQ polling on or off. onOff = (0,1) means (disable, enable) SRQ polling of specified
address.

registerPort Register a port. When asynGpib receives this request it calls asynManager.registerPort.

srqHappened Called by low level driver when it detects that a GPIB device issues an SRQ.

asynGpibPort

asynGpibPort is the interface that is implemented by gpib drivers, e.g. the vxi11. It provides:

asynGpibPort

asynCommon methods All the methods of asynCommon

asynOctet methods All the methods of asynOctet

addressedCmd Issue a GPIB addressed command.

universalCmd Issue a GPIB universal command.

ifc Issue a GPIB Interface Clear command.

ren Issue a GPIB Remote Enable command

srqStatus Returns (0,1) if SRQ (is not, is) set. Normally only called by asynGpib.

srqEnable Enable or disable SRQs. Normally only called by asynGpib.

serialPollBegin Start of serial poll. Normally only called by asynGpib.

serialPoll
Poll the specified address and return its response. Normally only called by
asynGpib.

serialPollEnd End of serial poll. Normally only called by asynGpib.

Port Drivers

Local Serial Port

The drvAsynSerialPort driver supports devices connected to serial ports on the IOC.

Serial ports are configured with the drvAsynSerialPortConfigure and asynSetOption commands:

 drvAsynSerialPortConfigure("portName","ttyName",priority,noAutoConnect,noEos)
 asynSetOption("portName",addr,"key","value")

where the arguments are:

portName − The portName that is registered with asynGpib.•
ttyName − The name of the local serial port (e.g. "/dev/ttyS0").•
priority − Priority at which the asyn I/O thread will run. If this is zero or missing then
epicsThreadPriorityMedium is used.

•

noAutoConnect − Zero or missing indicates that portThread should automatically connect. Non−zero if
explicit connect command must be issued.

•

noEos − Zero or missing indicates that the input routines should search for the end−of−string character(s),
if any. Non−zero inhibits end−of−string search.

•

addr − This argument is ignored since serial devices are configured with multiDevice=0.•

asynDriver

asynGpibPort 23

The following table summarizes the drvAsynSerialPort driver asynSetOption keys and values. Default values are
enclosed in square brackets.

Key Value

baud [9600] 50 75 110 134 150 200 300 600 1200 ... 230400

bits [8] 7 6 5

parity [none] even odd

stop [1] 2

clocal [Y] N

ctrscts[N] Y

The clocal and crtscts parameter names are taken from the POSIX termios serial interface definition. The clocal
parameter controls whether the modem control lines (Data Terminal Ready, Carrier Detect/Received Line Signal
Detect) are used (clocal=N) or ignored (clocal=Y). The crtscts parameter controls whether the hardware
handshaking lines (Request To Send, Clear To Send) are used (crtscts=Y) or ignored (crtscts=N). The default
parameter values (clocal=Y, crtscts=N) are those of a 'data−leads−only' serial interface.

The vxWorks serial driver does not provide independent control of the hardware handshaking and modem control
lines thus clocal=Y implies crtscts=N and clocal=N implies crtscts=Y.

vxWorks IOC serial ports may need to be set up using hardware−specific commands. Once this is done the
standard drvAsynSerialPortConfigure and asynSetOption commands can be issued. For example, the following
example shows the configuration procedure for a port on a GreenSprings octal UART Industry−Pack module on a
GreenSprings VIP616−01 carrier.

ipacAddVIPC616_01("0x6000,B0000000")
tyGSOctalDrv(1)
tyGSOctalModuleInit("RS232", 0x80, 0, 0)
tyGSOctalDevCreate("/tyGS/0/0",0,0,1000,1000)
drvAsynSerialPortConfigure("L0","/tyGS/0/0",0,0,0)
asynSetOption("L0",0,"baud","9600")

TCP/IP or UDP/IP Port

The drvAsynIPPort driver supports devices which communicate over a TCP/IP or UDP/IP connection. A typical
example is a device connected through an Ethernet/Serial converter box.

TCP/IP or UDP/IP connections are configured with the drvAsynIPPortConfigure command:

 drvAsynIPPortConfigure("portName","hostInfo",priority,noAutoConnect,noEos)

where the arguments are:

portName − The portName that is registered with asynGpib.•
hostInfo − The Internet host name, port number and optional IP protocol of the device (e.g.
"164.54.9.90:4002", "serials8n3:4002", "serials8n3:4002 TCP" or "164.54.17.43:5186 udp"). If no
protocol is specified, TCP will be used.

•

priority − Priority at which the asyn I/O thread will run. If this is zero or missing then
epicsThreadPriorityMedium is used.

•

asynDriver

24 TCP/IP or UDP/IP Port

noAutoConnect − Zero or missing indicates that portThread should automatically connect. Non−zero if
explicit connect command must be issued.

•

noEos − Zero or missing indicates that the input routines should search for the end−of−string character(s),
if any. Non−zero inhibits end−of−string search.

•

There are no asynSetOption key/value pairs associated with drvAsynIPPort connections.

vxi11

VXI−11 is a TCP/IP protocol for communicating with IEEE 488.2 devices. It is an RPC based protocol. In
addition to the VXI−11 standard three additional standards are defined.

VXI−11.1 − A standard for communicating with VXIbus devices. These devices have a vxiName that
starts with "vxi".

•

VXI−11.2 − A standard for communicating with a IEEE 488.1 device. This means that the TCP/IP
connection is talking to a GPIB controller that is talking to a GPIB bus. These devices have an vxiName
that starts with "gpib".

•

VXI−11.3 − A standard for communicating with IEEE 488.2 devices. This means that the TCP/IP
connection is talking directly with an device. These devices have an vxiName that starts with "inst".

•

Consult the following documents (available on−line for free) for details.

VMEbus Extensions for Instrumentation
 VXI−11 TCP/IP Instrument Protocol Specification
 VXI−11.1 TCP/IP−VXIbus Interface Specification
 VXI−11.2 TCP/IP−IEEE 488.1 Interface Specification
 VXI−11.3 TCP/IP−IEEE 488.2 Instrument Interface Specification

The following commands may be specified in the st.cmd file

 E2050Reboot("inet_addr")
 E5810Reboot("inet_addr","password")
 vxi11Configure("portName","inet_addr",recoverWithIFC,timeout,
 "vxiName",priority,noAutoConnect)

where

inet_addr − Internet Address•
password − password. If given as 0 the default E5810 is used.•
portName − The portName that is registered with asynGib.•
inet_addr − Internet address.•
recoverWithIFC − (0,1) => (don't, do) issue IFC when error occurs.•
timeout − I/O operation timeout in seconds as a double. If 0.0 then a default is assigned.•
vxiName − Must be chosen as specified above.•
priority − Priority at which the asyn I/O thread will run. If this is zero or missing then
epicsThreadPriorityMedium is used.

•

noAutoConnect − Zero or missing indicates that portThread should automatically connect. Non−zero if
explicit connect command must be issued.

•

asynDriver

vxi11 25

Green Springs IP488

This is support for the Green Springs Industry Pack GPIB carrier. The configuration command is:

 gsIP488Configure(portName,carrier,module,intVec,priority,noAutoConnect)

where

portName − An ascii string specifying the port name the will be registered with asynDriver.•
carrier − An integer identifying the Industry Pack Carrier•
module − An integer identifying the module on the carrier•
intVec − An integer specifying the interrupt vector•
priority − In integer specifying the priority of the port thread. A value of 0 will result in a defalt value
being assigned

•

noAutoConnect − Zero or missing indicates that portThread should automatically connect. Non−zero if
explicit connect command must be issued.

•

An example is:

#The following is for the Greensprings IP488 on an MV162
ipacAddMVME162("A:l=3,3 m=0xe0000000,64")
gsIP488Configure("L0",0,0,0x61,0,0)

National Instruments GPIB−1014D

This is support for a National Instruments VME GPIB interface. The configuration command is:

 gsIP488Configure(portNameA,portNameB,base,vector,level,priority,noAutoConnect)

where

portNameA − An ascii string specifying the port name that will be registered with asynDriver for portA.•
portNameB − An ascii string specifying the port name that will be registered with asynDriver for portB. If
only one port should be registered than leave this as a null string. The support should also work for a
single port NI1014 butb has not been tested.

•

base − VME A16 base address.•
vector − VME interrupt vector.•
level − An integer specifying the interrupt level.•
priority − In integer specifying the priority of the port thread. A value of 0 will result in a defalt value
being assigned

•

noAutoConnect − Zero or missing indicates that portThread should automatically connect. Non−zero if
explicit connect command must be issued.

•

An example is:

#The following is for the Greensprings IP488 on an MV162
ni1014Config("L0","L1",0x5000,0x64,5,0,0)

NOTES:

Ports A and B are almost but not quite the same. Thus the code for connecting to port A is slightly•

asynDriver

26 Green Springs IP488

different than the code for portB.
In order to disconnect and reconnect either port, BOTH ports must be disconnected and reconnected.•
When the ports are connected, portA MUST be connected before portB.•
Programmed I/O, via interrupts, rather than DMA is implemented. Thus no A24 address space is required.•

Diagnostic Aids

iocsh commands

 asynReport(filename,level)
 asynInterposeFlushConfig(portName,addr,timeout)
 asynInterposeEosConfig(portName,addr)
 asynSetTraceMask(portName,addr,mask)
 asynSetTraceIOMask(portName,addr,mask)
 asynSetTraceFile(portName,addr,filename)
 asynSetTraceIOTruncateSize(portName,addr,size)
 asynSetOption(portName,addr,key,val)
 asynShowOption(portName,addr,key)
 asynConnect(entry,portName,addr,oeos,ieos,timeout,buffer_len)
 asynAutoConnect(portName,addr,yesNo)
 asynEnable(portName,addr,yesNo)
 asynRead(entry,nread,flush)
 asynWrite(entry,output)
 asynWriteRead(entry,output,nread)
 asynFlush(entry)

asynReport calls asynCommon:report for all registered drivers and processModules.

asynInterposeFlushConfig is a generic interposeInterface that implement flush for low level drivers that
don't implement flush. It just issues read requests until no bytes are read. The timeout is used for the read requests.

asynInterposeEosConfig is a generic interposeInterface that implements end of string processing for low
level drivers that don't.

asynSetTraceMask calls asynTrace:setTraceMask for the specified port and address.

asynSetTraceIOMask calls asynTrace:setTraceIOMask for the specified port and address.

asynSetTraceFile calls asynTrace:setTraceFile. filename is handled as follows:

Not specified − A NULL pointer is passed to setTraceFile. Subsequent messages are sent to errlog.•
An empty string ("") or "stdout" − stdout is passed to setTraceFile.•
Any other string − The specified file is opened with an option of "w" and the file pointer is passed to
setTraceFile.

•

asynSetTraceIOTruncateSize calls asynTrace:setTraceIOTruncateSize

asynSetOption calls asynCommon:setOption. asynShowOption calls asynCommon:getOption.

asynConnect,...asynFlush provide shell access to asynSyncIO methods. entry is a character string constant that
identifys the port,addr.

where

asynDriver

Diagnostic Aids 27

filename (for report) − An ascii string naming a file to which the report is sent. If this is null or a null
string then the output is sent to stdout

•

level − The report level.•
portName − An ascii string specifying the portName of the driver.•
addr − In integer specifying the address of the device. For multiDevice ports a value of −1 means the port
itself. For ports that support a single device addr is ignored.

•

mask − The mask value to set. See the mask bit definitions in asynDriver.h•
key − The key for the option desired.•
val − The value for the option.•
yesNo − The value (0,1) means (no,yes).•
entry − A character string that identifies the asynConnect request.•
oeos,ieos − The output and input end of string terminator. Default="\r"•
timeout − timeout as an integer in milliseconds. The default is 1;•
buffer_len − length of buffer for I/O. Default=80.•
nread − max number of bytes to read. Default=buffer_len.•
flush − (0,1) means (don't, do) flush before reading. Default=0.•
output − output string.•

The commands asynConnect, asynRead, asynWrite, asynWriteRead, asynFlush allow I/O to a device from the ioc
shell. Examples are:

asynConnect("myid","A",0,"\n","\n",1,20)
asynWrite("myid","testnew")
asynRead("myid")
testnew\n
asynWriteRead("myid","this is test")
this is test\n

Install and Build

Install and build asynDriver

After obtaining a copy of the distribution, it must be installed and built for use at your site. These steps only need
to be performed once for the site (unless versions of the module running under different releases of EPICS and/or
the other required modules are needed).

Create an installation directory for the module, usually this will end with1.

.../support/asyn/

Place the distribution file in this directory. Then issue the commands (Unix style)2.

gunzip <file>.tar.gz
tar xvf <file>.tar

This creates a support <top>.3.

.../support/asyn/X−Y

where X−Y is the release. For example.

.../support/asyn/3−1

asynDriver

28 Install and Build

Edit the config/RELEASE file and set the paths to your installation of EPICS_BASE and IPAC. IPAC
is only needed if you are building for vxWorks.

4.

Run make in the top level directory and check for any compilation errors.5.

Using asynDriver components with an EPICS iocCore application

Since asynDriver does NOT provide support for specific devices an application must obtain device specific
support elsewhere. This section only explains how to include asynDriver components.

In the configure/RELEASE file add definitions for IPAC, ASYN, and EPICS_BASE.

In the src directory where the application is built

Add the following to Makefile

 <app>_LIBS += asyn

•

Add the following to <app>Include.dbd and uncomment the line or lines
appropriate for your application:

 #include "drvAsynSerialPort.dbd"
 #include "drvAsynIPPort.dbd"
 #include "drvVxi11.dbd"
 #include "drvGsIP488.dbd"
 #include "drvIpac.dbd"
 #registrar(mv162ipRegistrar)

•

In the st.cmd file add.
dbLoadRecords("db/asynRecord.db","P=<ioc>,R=<record>,PORT=<port>,ADDR=<addr>,OMAX=<omax>,IMAX=<imax>")

You must provide values for <ioc>, <record>, <port>, <addr>, <omax>, and <imax>.

Once the application is running, medm displays for an ioc can be started by: medm −x −macro
"P=<ioc>,R=<record>" <asyntop>/medm/asynRecord.adl &

You must provide correct values for <ioc> and <record>. Once asynRecord is started it can be connected to
different devices.

License Agreement

Copyright (c) 2002 University of Chicago All rights reserved.
asynDriver is distributed subject to the following license conditions:

SOFTWARE LICENSE AGREEMENT
Software: asynDriver

 1. The "Software", below, refers to asynDriver (in either source code, or
 binary form and accompanying documentation). Each licensee is
 addressed as "you" or "Licensee."

 2. The copyright holders shown above and their third−party licensors
 hereby grant Licensee a royalty−free nonexclusive license, subject to
 the limitations stated herein and U.S. Government license rights.

asynDriver

Using asynDriver components with an EPICS iocCore application 29

 3. You may modify and make a copy or copies of the Software for use
 within your organization, if you meet the following conditions:
 a. Copies in source code must include the copyright notice and this
 Software License Agreement.
 b. Copies in binary form must include the copyright notice and this
 Software License Agreement in the documentation and/or other
 materials provided with the copy.

 4. You may modify a copy or copies of the Software or any portion of it,
 thus forming a work based on the Software, and distribute copies of
 such work outside your organization, if you meet all of the following
 conditions:
 a. Copies in source code must include the copyright notice and this
 Software License Agreement;
 b. Copies in binary form must include the copyright notice and this
 Software License Agreement in the documentation and/or other
 materials provided with the copy;
 c. Modified copies and works based on the Software must carry
 prominent notices stating that you changed specified portions of
 the Software.

 5. Portions of the Software resulted from work developed under a U.S.
 Government contract and are subject to the following license: the
 Government is granted for itself and others acting on its behalf a
 paid−up, nonexclusive, irrevocable worldwide license in this computer
 software to reproduce, prepare derivative works, and perform publicly
 and display publicly.

 6. WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS" WITHOUT WARRANTY
 OF ANY KIND. THE COPYRIGHT HOLDERS, THEIR THIRD PARTY LICENSORS, THE
 UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND THEIR
 EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
 FOR A PARTICULAR PURPOSE, TITLE OR NON−INFRINGEMENT, (2) DO NOT ASSUME
 ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS,
 OR USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF THE
 SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4) DO NOT WARRANT
 THAT THE SOFTWARE WILL FUNCTION UNINTERRUPTED, THAT IT IS ERROR−FREE
 OR THAT ANY ERRORS WILL BE CORRECTED.

 7. LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT HOLDERS, THEIR
 THIRD PARTY LICENSORS, THE UNITED STATES, THE UNITED STATES DEPARTMENT
 OF ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
 CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF ANY KIND OR NATURE,
 INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS OR LOSS OF DATA, FOR ANY
 REASON WHATSOEVER, WHETHER SUCH LIABILITY IS ASSERTED ON THE BASIS OF
 CONTRACT, TORT (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR
 OTHERWISE, EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE
 POSSIBILITY OF SUCH LOSS OR DAMAGES.

asynDriver

30 Using asynDriver components with an EPICS iocCore application

	Table of Contents
	asynDriver: Asynchronous Driver Support
	License Agreement
	Contents
	Purpose
	Status
	Acknowledgments
	Overview of asynDriver
	Standard Asynchronous Driver Interfaces
	Overview
	Comments:

	asynDriver Structures and Interfaces
	asynStatus
	asynException
	asynQueuePriority
	asynUser
	asynInterface
	asynManager
	asynCommon
	asynOctet
	Trace Interface
	asynTrace

	Synchronous Interface to asynDriver
	Theory of Operation
	Multiple Device vs Single Device port drivers
	Connection Management
	Flow of Control
	portThread

	asynRecord: Generic EPICS Record Support
	Example
	Test Example
	asynGpib
	asynGpibDriver.h
	asynGpib
	asynGpibPort

	Port Drivers
	Local Serial Port
	TCP/IP or UDP/IP Port
	vxi11
	Green Springs IP488
	National Instruments GPIB-1014D

	Diagnostic Aids
	iocsh commands

	Install and Build
	Install and build asynDriver
	Using asynDriver components with an EPICS iocCore application

	License Agreement

